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Abstract 

A direct approach to propositional systems alternative to that of Jauch and Piton has been 
given in a preceding paper. The most difficult point is the foundation of the covering law. 
Independently of the latter holding true we consider here questions defined by a measure- 
ment process which we describe in the propositional system of the apparatus coupled to 
the quantum object. 

I 

A direct approach to propositional systems alternative to that of Jauch and 
Piron (Jauch & Piton, 1969) has been given in a previous paper (I-Iellw~ & 
Krausser, 1974), henceforth referred to as PSMI. It is based on a set 6 :  of pre- 
paration procedures and a set .@ of questions. Classes of equivalent questions 
are introduced in the same manner as by Jauch and Piron to define propositions. 
The set of Propositions, denoted by [~] ,  is partially ordered in a natural way 
such that ( [ ~ ] ,  <_) is automatically a complete lattice. We have then departed 
from Jauch and Piron's way of reasoning to introduce orthocomplementarity, 
weak modularity and atomicity, step by step, through postulates on S # or ~.. 

We have said that a physical system has property ( [a] )  iff the proposition 
[a], a E  .@, holds true. Physical systems on which ([a])  is present can be pro- 
duced by certain preparation procedures which impose [a] to hold true. We 
have given an operational definition for ( [a])  to be absent on physical systems. 
There are propositions [uT] such that ( [a])  is absent if [uT] holds true, but 
there need not be a proposition which necessarily holds true if ( [a] )  is absent. 
In Postulate 1 we have required such a proposition to exist and called it ~ ([a]).  
So a mapping ~ : [~] -> [~] has been defined. We found ~0 to be an ortho- 
c0mptementation iff ~([~. ] ) = [~] ,  i.e. iff ~ is subjective. This has been required 
in Postulate 2. Weak modularity now turned out to be equivalent to the state- 
ment: If [a] ~ [/3] and [o~] ,/: [/3] then there is at least one preparation pro- 
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cedure for physical systems in which ([/3]) is present but ( [a])  is absent. Postu- 
late 3 is just this statement. Considering the sets of propositions imposed to be 
true, or, otherwise stated, sets of properties imposed to be present by certain 
preparation procedures, we have introduced equivalence classes of sets of pre- 
paration procedures. These classes have been partially ordered in a natural 
way: The more properties imposed the better is the class of preparation pro- 
cedures. Postulate 4, a requirement that some kind of the best preparation 
procedures exist, implies atomicity~ of the propositional system. 

The covering law has been introduced by Jauch and Piron through a postu- 
late which requires ideal measurements of the first kind to exist for any pro- 
position. It seems questionable to us whether this postulate can be fulfilled in 
nature. Instead, we have introduced and discussed a superposition postulate, 
which seems to be of some advantage. Unfortunately the latter postulate does 
not make any statement in classical physics, hence it is far from being obvious 
on the level of everyday experience. 

If the covering law generally holds true for propositional systems, quantum 
mechanics can be described in Hilbert space. In Hilbert space measurement 
processes which bring information about quantum objects into the classical 
level of observation can be formulated. Can this also be done when the covering 
law does not hold? To answer this problem one has to describe measurement 
processes independently from Hilbert space representation of the propositional 
system for the quantum object, only assuming Postulates 1 through 4 to hold 
true for the latter. 

In the following we attempt to give a formulation of measuring processes 
without assuming the covering law to hold true for the propositional system 
of the quantum object. To any question belongs a classical system, the appar- 
atus, from-which the outcome yes or no is to be read by the experimenter. 
In the simplest case the quantum object is coupled with the apparatus to 
define another system, composed of both. Initially, both systems are free, i.e. 
no interaction takes place between the components, and both are prepared 
independently in prescribed ways. An interaction may then happen. Finally 
the experimenter observes the outcome of a certain question for the compound 
system. 

In Section II we introduce a postulate which relates the propositional 
system of  the compound system to those of the components, quantum object 
and apparatus. We do not specify the interaction process which may happen 
between the components, but note that the question, we denote it by/[A12 , 
defining final observation is contained in a proposition of the compound 
system. In Section III we connect the propositions [el] and [vel] defined by 
the measurement process, with the preparation procedure of the apparatus 
and the proposition [#12], finally to be observed. From Postulates 1 and 2 of 
PSMI it follows that any proposition must contain at least one question e 1 
which fulfills [re 1 ] = ~ [el ]. A set of necessary and sufficient conditions for 
this special case is derived in Section IV. We compare briefly the Hilbert space 

Atomicity is used in the sense: Every proposition can be represented as a joining 
of atoms. 
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formulation with that given here. Finally, in Section V, we show that com- 
mensurability of two propositions implies compatibility. 

/ /  

In the description of a measurement process we have to consider the 
physical system composed of a quantum object and apparatus. The proposi- 
tional systems of quantum object and apparatus will be denoted by ([~ 1 ], 
< ,¢ )  and ([~2] ,  _<,~), respectively, and that of the compound system by 
([212], <,~0). We will use the same symbols for the orderings and lattice 
operations in the different propositional systems. Questions, propositions and 
further notations will be labelled with lower indices 1,2, 12 if they refer to 
the three propositional systems, respectively. 

We must know how propositions of the component systems, quantum 
object and apparatus, are related to propositions of the compound system. 
Such assumptions have been formulated by Jauch (Jauch, 1968). Close investi- 
gations in connection with Ludwig's axiomatic approach to quantum mecha- 
nics have been given by Hartk~mper (Hartkfimper, 1968) and Neumann 
(Neumann, 1968). We content ourselves with some basic ideas for a partial 
motivation of the following, Postulate 5, which we adopt for our purpose. 

- / We assume that, at least if the component systems are sufficiently far away 
from each other, they can be treated as independent (or 'free') physical systems. 
Preparation procedures on the component systems can then be carried through 
independently from each other arbitrarily. Any proposition [al] or [o~z] can 
be imposed to hold true for object or apparatus by at least one preparation 
procedure s I , s 1 E ~  1, or s2, s2 ESr~, respectively. But any set of preparation 
procedures ~1(] = 1, 2), s/C_if ' / ,  is also a set of preparation procedures for the 
compound system. We know from PSMI that s/determines a minimal proposi- 
tion a([ s/] ) in [~ / ]  which is imposed by any procedure s], s] E s 1. If the 
compound system is considered, there must be such minimal proposition in 
[~- 121 which we denote by O](a([s]] )). We require 

Postulate 5.1. For any component system there is an injection 

oi.: [~/l -" [0~21 (/= 1,2) 

such that 

0) 

for arbitrary Y ,  JT'C__ [ ~]1 

(ii) 

and 

(~i) 

ej([q~z]) = [ ~ M  

:oo~=ojo:  
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The following conclusions are immediate. 

Lemma 1. 
(i)' Oj([o~jy~.x,.[aj] ) = [ajy~ Oj([a]]) 

(ii)' ®]([I]] ) = [/12] 
As long as the component systems are separated from each other, measure- 
ments on different components can be carried through independently from 
each other. So we assume that O1([a1 ] ) is always compatible with Oa([/3~] ) 
(in symbols O ~ ([a~ ] ) ~ ®z( [~2] ))- Moreover no proposition ®i( [a l] ) can 
imply or can be implied by any ®~([/~2] ), if [a I ] 5/= [~1 ] [I1], and 
[~] ~ [q~21, [I21. 

Postulate 5.2. Let [ai], [Hi] ~ [~j] ,  (] = 1,2). 

(iv) If [a]], [/3t.1 ~ [b/l, [I/] 

then 

O~([~1 ) _< O~([&] ) 

implies j = k. 

(v) o2([&] ) 
Maximal boolean sublattices~j of [~-j] correspond, in the usual terminology, 
to complete systems of observables for the components, respectively. We 
assume finally 

Postulate 5.3. Let us be given any two maximal bootean sublattices ~ j ,  
~i  C [~j] (/= 1,2). Then the completion by cuts of the boolean sublattice 

12-generated by O1(~1) U ®2(~2) is maximal in [°A 12]. 

With help of the latter postulate we prove 

Lemma 2. Let ej(j = 1, 2) denote atoms in [~]]. Then ®1(el) A O2(e2) is 
an atom in [~ 12 I- 

Proof. Let us be given any boolean latt ice~, and e e l ,  e ~a [~]. One can 
easily check that e is an atom in ~ iff for any a, a E ~ ,  e 5~ a implies a < ~e. 

Now arbitrarily consider two maximal boolean sublattices~j of [~/] 
(/= 1,2) which contain the given atoms ej of [~j] ,  respectively. For any 
ajE~ j, Oj(ej) ~ O](aj) implies Oi(aj) <__ O](~e]) = qoOj(ej). Denote b y ~  12 the 
boolean sublattice which arises as the completion by cuts of the boolean 
lattice generated by O 1(~q~1) U O2(9$z) in [~12]- Any a12E~12 can be 
written in conjunctive normal form, i.e., if we drop indexing sets, in the form 
a12 = Ab12 with b12 = Vc12 and C12 E t~i(~1) k../O2(~2). From Lemma 1 
we infer b12 = ®1(al) V ®2(a2) with a I E ~ I  and a2E'~ 2. So a12 finally can 
be written in the form a12 = ~c~ A ~ ,  (O101) v®2(a2)) with a suitable sub- 
s e r f 1  x Y 2  of N1 x g 2  

Consider b12 = O1(al) v®2(a2). ®1(el) A®2(e2) 2~ b12 implies e 1 ~ al ,  
and e 2 ~a2 .  Hence a I < ~ e  I and a2 ~ e 2 .  So b12 <_ ~%(ea) v ~®2(e2) 
= ~O(®l(el) A ®2(e2)). 
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Consider now a12 = ~c, A ~c (Ol(al) VO2(a2))" Ol(el) AO2(e2) <~a12 
implies e l ( e l )  ^ O2(e2) ~ O1(al) vO2(a2) for some (a 1, a 2 ) ~  1 x ff/'2- 
So O1(al) v O2(a2) <~(O1(el)  AO2(e2)) for any such (ax, a2). So a12 
~(Ol(e0 ^ ®2(e2)) if O1(ei) ^ O2(e2) ~ a12 holds true for any a12E~12. 

We show that e l ( e 0  ^ O2(e2) ~ [~12]. Assume in contrary ~a(Ol(el) A 
O2(e2)) = ~ 1 ( e l )  v~O2(e2) = [112 ] to hold true. Then O1(e1) ^~92(e2) = 
Ot(e1), i.e. ®2(~e2)) >__ O1(et) which gives, by Postulate 5 (iv), t = 2, a 
contradiction. 

By the argument given at the beginning of this proof we have shown 
O1(el) A O2(e2) to be an atom in~12- We have to show that it is also an 
atom in [-~12] - Let 112 E [.~12],e12 < e l ( e 0  A O2(e2), then for anY a12, 
a12 E ~12, we have e12 < a12 or a12 ~ ~0e12. So e12 ~+a12. By Postulate 5.3, 
the sublattice 9~12 is maximal boolean in [-~12], hence e12 E~12.  Assume 
el2 :~ [~bt2], then e12 ~ ~(Ol(el) A O2(e2)) gives Ol(el) A O2(e2) ~_e12. 
So e12 = O1(el) AO2(e2). This completes the proof of Lemma 2. 

Lemma 3. Let [a l ] ,  [31] E [~1],  and [3"2] E [-~2], then 

[Or1] ~'[/~1] iff 01([a11)/\02([3"2])<O1([/31]) AO2([3'2]) 

Proof. Necessity is trivial. To show sufficiency assume 

O1([0tl ])  AO2([3"2]) ~_~Ol ([~1]) A O2([3'2]) 

but, contrary to the statement, [a I ] ^ [31] 4= [al ]. Then, by Postulate 3 of 
PSMI, there is a r 1 , r I E SP 1, such that al ([rl ] ) <__ [al ] and a l( [rl ] ) <__ 
~([~1] ^ [th]).t 

The latter relation implies that 

[~12] ::/:=010al([gl] ) A O 2 ( [ 3 ' 2 ] ) ~ l ( [ O t 1 ]  A [ ~ 1 ] ) ^ 0 2 ( [ V 2 ] )  

So 01 06[ 1 ( [/'1 ] )/x 02 ( [3"2 ] ) is nontrivial and precedes the orthocomplement 
OfOl([a l ]  a [31]) A02([3'2])" Hence 

Ol([ad ^ [~1]) ^o2([3"~]) ¢ot(([~1] ^ [~11) val([rl]))^o2([3"2]) 

Moreover, from al([r  1 ]) < [% ] we have 

o1(([~1] ^ [~1]) v~([rl]))  ^o2([3"~])<_o1([~1])^%([~2]) 
Combining both results we obtain 

01( [~1]  A [~1]) AO2([3"2]) =/:01([0ll]) ^ 02( [ ' / 2 ] )  

which contradicts the assumption. 

111 

We come now to our main problem, the description of measurement pro- 
cesses. We require Postulates 1 through 5 to hold true. The covering law need 
not be true in any of the propositional systems in consideration. 

We have written [rl ] instead of fir1} ] to make notations not too complicated. 
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Recall that we are considering a series of experiments which are carried 
through in accordance with a certain prescription which we have denoted by 
(sl,  e l ) ,  s1~6a l ,  e~ e ~  1. Note that all our argumentation rests on the 
assumption of homogeneity of time. For any single experiment we choose as 
zero point of time the preparation of the quantum object. The latter is given 
by the moment at which a certain preparative manipulation, prescribed by sl 
has been carried out. The measurement prescription e t fixes among other 
things an admissible set t 2 of preparation procedures for the apparatus in 
such geometrical and temporal relation to s I , that apparatus and object are 
prepared independently from each other. Finally, e 1 prescribes a certain 
observation which has to be done at a certain time on the compound system. 
In our case this is a question/~ 12,/~ 12 E ~ 12. The result of this observation 
defines the outcome, either yes or no, for ~1 and concludes the measurement 
process. 

In the usual description of measurement processes in Hilbert space a 
unitary operator describes the temporal development of the compound 
system due to the interaction of quantum object and apparatus. Here we do 
not analyse this interaction process. We only use the very meaning of pre- 
paration procedures, questions, and the coupling of physical systems. The 
independent preparation of quantum object and apparatus imposes a certain 
minimal proposition [oq2], [al~] E [~12],  to hold true for the compound 
system. Minimality means that any further true proposition in [~12] is 
implied by [al~].  If we determine [oq2 ] for a given set Sl of preparation 
procedures ingPl, then [a12] <_ [/a12] will be a criterion for ~ 1 C__ d~(el). 
We proceed in this way. 

The set 

t(r  ) = {[a] la([r  ]) <_ [a])  c__ [.~] 

of all propositions imposed to be true for any preparation procedure in a 
given set r has been introduced in Chapter V of PSMI. Note that a([ t ] ) and, 
consequently, t ( r  ) only depend on the class [ t ] of equivalent sets of pre- 
paration procedures and not on the special representing set ~. We have 
written also 

[~] < [ r ]  for a( [~])<__a([ t ] )  

The meaning of the latter partial ordering is, that all s, s E ~ ,  impose all pro- 
positions to be true which r, r e  ~:, imposes, but there may be some more. Let 
37"([ r ]) denote the ensemble of pure sets or preparation procedures ~: with 
[~]<[~]. 
We state 

Lernma4.  a ( [ r ] ) =  v V )a([~ ])  
• ~ r ( [  r l  

Proof  As a([ r ]) >__ a([ ~ ] ), we have immediately 

a([r])>__~ V ,  a([~'])  
r ~ y ( I r l )  

Assume, contrary to the statement, inequality to hold, then, by Postulate 3, 
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there is a preparation procedure r with a([r] ) < a([ r ]) and a([r] ) <__ 
~ -  J , .  a ( [ r ] ) )  Moreover, by Postulate 4, there is a pure set g , such 

r ~' / l r  1 )  " ar 
that a([g ] ) < a( Jr] ). This implies g e ff  ([ r ] ), so a( [ g ] ) <__ x _ V +  . .a( [ ~ ] ), 

- -  I : ~ - ; ,  LL 1:1 ) 

which contradicts a([ ~ ] ) < ~( ~.~ jV([ "~ l)a( [ ~ ] )). This completes the proof. 

With this in mind, we return to the measurement of e 1 . Quantum object 
and apparatus have to be prepared independently from each other, the latter 
by a procedure in r 2. Let the quantum object be prepared by a procedure in 
~1. As already mentioned in Section II, by this a certain set of preparation 

procedures for the compound system is defined, which we denote by (~ 1, r 2)- 
We note that, obviously, [~ 1] < [ ~1] and [r2] < [ r2] imply [(g 1, f 2)] < 
[( ~ 1, r 2) ]- We are seeking the minimal [a 12 ] in [.~i 2 ] which is imposed by 
any procedure in ( ~ 1, ~c 2), i.e. we have to seek a12 ([( ~ 1, ~ 2)] ). From Section 
II we already know" 0 1 (a 1( [ ~ 1 ] )), and 0 2 (a2([r2])) to hold true in that case. 
So we have immediately 

at2([(~ 1, 1: 2)]) ~O1 ° a l ( [ ~  1]) A02 © a2([r2]) 

Let now J l ( [  ~ 1 ] ) and J-2([  r 2 ] ) be defined analogously to J (  [ r ] ) in 
Lemma 4. We have by the same argument 

a~([(~ ~, ~ ) ] )  =0~ Oa,([~])~O~ oa~([~2]) 

for any gl ~ ' - ~ ( [ ~  ~]) and ~ 2 ~ J ' ~ ( [  rz]) ,  because the right-hand side is 
an atom in [ ~ 2 ] ,  by Lemma 2. From [(~ ~, ~ ~)] < [( ~ ~, r 2)] we have, in 
addition, 

O10a l ( [~  1]) A02 °a2( [ t '2 ] )  =a l2 ( [ (g l ,  ~2)])~.~a12([( ~ 1, 1:2)]) 

With the help of Lemma 1(0', and Postulate 5(v) we conclude 

0 1 ( ~ , ~ - V ( I + , ] ) a l ( [ g l l ) ) A O 2 ( r ~ - ( I r = l V  ~a2([~:2]))~at2([(~l ,  l: 2)]) 

or, if we apply Lemma 4, 

O1 oa l ( [~  1]) p\ 02 ©a2([l:2])~__a12([(~l, r2)])  
We have proven 

Theorem 1. The set of all propositions imposed as true for any preparation 
procedure in ( ~ I, 1:~) is given by 

t12(( $1, 1~2)) = {[~121 tO1 O al([$11) A02 °a2([  r21) ~__ [Oil2] } 

The criterion for ~1 C g)(el) is now 

O1 ° a l ( [  ~ 1]) AO2 °a2([  r2])  ~ [//12] 

In PSMI we saw that the mapping a: [~a(57°)] -+ [.~] \~{ [¢] } is bijective. We 
have, obviously, for [a] g= [¢] that [o~] = a([dg(a)]). So we may restate the 
criterion as 
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Recall that ve 1 is defined to have outcome yes iff the outcome of e t is no. 
So we may add 

[/31] ~ [Pel] iff O1([/31] ) /~®2 °a2([1:21)<-- [v#12] 

We sum up in 

Theorem 2. Let el be the question defined by a measurement process with 
r 2 as the set of admissible preparation procedures of the apparatus and/112 
the question finally to be observed on the compound system. Then 

O~([q 1) A 02 o a2([r 21) < [/112] 

Ol([vql) ^ 02 oa2([r 21) _< [v/112] 
Moreover, [e 1] and Iv% ] are determined by 

[el] =l.u.b.£[O~l]lOl([~l] ) AO 2 022([1 :2] )~  LLt12]} 

and 

[vel ] = I.u,b.{[/31 ] 1®i([31 l ) / \  ®2 0 a2([~ 21) <_ [v/112 ] } 

From the definition of [el ] in PSMI we know that [re 1 ] <__ ~ [e 1 ] must hold 
true. We note that this is in accord with theorem 2. We have 

Ol([vel])A O2 oa2([~ 2])_< [v/1121 

-~*[/112] <~---Ol(~[ffl])V*O2 O a 2 ( [ r 2 ] )  

If we meet with 0 2 o a2([r 2]) and use postulate 5(v), this gives 

Ot([Vel]) AO2 o 22([~: 2]) <_O1@[q]) AO2 oa2([ r2]) 

which, by Lemma 3, is equivalent to [vet ] < ~ [el ]. 
The relations stated in Theorem 2 can be written equivalently in the form 

Ol( [e t ] )  A 02 ° a2 ( [ r  2]) ~ [/112] AO2 ©a2([r 2]) 

O1([vel]) AO2 °a2( [ r  2])<_- [v/112] AO2 °a2([  r 2]) 

The compound system is conditioned by truth ofO 2 o a2( [ ~2])- So any 
further proposition [0~12 ] which holds true for the compound systems is in 
conjunction with 02 o a2([r 2 ]). Only such conjunctions are related in 
Theorem 2. As a sublattice, the segment [ [~12 ],  02 O a 2 ([ r 2 ] ) ] ,  i.e. the 
lattice propositions [/312 ], L812 ] < O 2 0 a2( [ r 2 ]), can be endowed with 
the canonical relative orthocomplement 9r which is defined by 

~r[&2] =~[&21 A o2 oa2([r 21) 
It is well known that 

([D,2], 02 o ,2([r ~1)], <_, ~r) 
is weaMy modular (Piton, 1964, Appendice II). We may consider it as the 
propositional system of the compound system conditioned by the preparation 
of the apparatus. 
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holds true. 
Now assume [re I ] 
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IV  

For a question % ,  a I E ~. t ,  [ml  ] <__ ~0 [a I ] holds true in general. In PSMI 
we have required Postulates 1 and 2, i.e., that any proposition contains at 
least one question q ,  such that [re 1 ] = ~0 [61 ].  We shall now assume 61 to be 
defined by a measurement process as introduced above and state a necessary 
and sufficient condition for this to hold true. 

We assume [v~12] = ~P[#12] to hold true for the compound system. This 
is obvious for classical observation. We have dropped this assumption in 
Theorem 2 because it does not enter into the proof and makes possible the 
study of  v. Neumann chains. 

Theorem 3. In addtion to the assumptions of Theorem 2 let 

hold true. Then 

Ire1] = ~[61] 

holds true if and only if the three conditions 

(i) 02 Oa2([1: 2]) <+ [P121 

(ii) ® l ( [ q ] )  A ®2 ° a 2 ( [ r 2 ] )  = [P12] A®2 0a2( [1 :2 ] )  

(iii) ®1([Yell)  A O 2 oa2([1:2]  ) =~0[#12 ] A 0 2 0a2([1:2]  ) 

are fulfilled. 

Proof. Let ~r denote the canonical relative orthocomplement with respect 
to the segment [[~12] ,®2 ° a 2 ( [  1:2])] of  [~12 ] -Fo r  [a12 ] ff [-~12] and 
[%2] *+ @2 0 a2 ( [ r  2])  we have always 

~r([Ot121 A ~)2 O a 2 ( [ I 2 ] ) )  

~fi([0~12] AO2 o a 2 ( [ r 2 1 ) )  A (~2 0 a 2 ( [ ~ 2 ] )  

(qo[o~12 ] V ~{~2 0 a2( [ 1:2])) A (~2 0 a2( [ 1:2] ) 

~[a12] A 02 oa2([1:21) 

0 2 0 a2([1: 2]))  = 01(~°[el l)  A 0 2 0  a2( [ 1:2]) 

= ~ [ q ] .  From Theorem 2 we then have 

O i ( [ e l ]  ) A 0 2 o a 2 ( [ r  2])<__ [/212 ] A O 2 0a2([1:21 ) 
and 

~0r(Ol([el] ) A 0 2 o a2([1: 2]))  < (q0[//12 ] A 0 2 © a2([1: 2]))  

These relations imply (i), (ii), and (iii) of the theorem. Firstly, we have 

([/212 ] A O 2 0 a 2 ( [ r  2]))  V (~o[btl2 ] A {~)20a2([1:2])) =@2 ° a2([l: 2])  
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which implies (i). From (i) we conclude 

~0r([g12 ] / ' ,0  2 ©a2( [ r2 ] ) )  = (~o[,ul2 ] A 0 2 ©az([ r21))  

Hence, the second relation writes 

~0r(Ol([el] ) A 0 2 © a2([l: 21)) ~__~0r([/.tl2] A O 2 oa2 ( [ r  2])) 

which is equivalent to 

(Ol[q] AO2 oa2([r2]))>([u121 AO2 oa2([rz])) 
This proves (ii), and, in consequence, (iii), because ~0 r is an orthocomple- 
mentation. So the conditions are proved to be necessary. 

We now show sufficiency. From (i) follows 

~r([btl2] A(~ 2 0a2([1C2])) =99[//12] AI~ 2 oa2 ( [ r2 ]  ) 

Conditions (ii) and (iii) now give 

{~l([Pel 1)/'k 1~2 Oa2([ r2])  = ~r(l~t([el ]) A 1~2 Oa2([ r2]))  

= ®l (9 [e l ] )  A ®2 °a2( [  r21) 

Application of Lemma 2 leads to [re 1 ] = ~0[el]. This completes the proof of 
Theorem 3. 

We briefly compare the foregoing with the usual description of the measure- 
ment process in Hilbert space. Let ~1, ~2,  and $1 ® ~ 2 denote the state 
spaces of quantum object, apparatus, and compound system, respectively. Let 
W2 denote the density operator of the apparatus which acts in ~ 2. We assume 
that the question finally to be observed fulfills [vgl2] = ~0[#12] • It is then 
represented by a projectionM12 in $12. We note that, usually,Ma2 is 
written as M12 = S+Q 12 S, where S denotes the unitarian representing time 
translation of the compound system from initial preparation to final observation 
in the Heisenberg picture. Let W1, acting in ~ t, denote the density operator 
of the quantum object, then the probability for the outcome yes is 

tr12((W1 ® W2)M12) = tra(F 1WI) (*) 

trlz denotes the trace in ~ 1 ® ~ 2, trl denotes that in 91. The hermitean 
F1, arising on the right-hand side of the equation, is uniquely determined by 
Wz and M12. The projection El  on the eigenspace to eigenvalue 1 ofF1 
represents the proposition [e 1 ] ,  the projection E ° corresponding to eigen- 
value 0 o f F  1 represents [re 1 ].  In general ~ <__ 1 - E l holds true, corre- 
sponding to [vet] ~ tP[e l ] .  

Obviously, a2([ r 2 ] ) corresponds to the projection on the support of W2 
in ~2 ,  which we denote by Az(W2). Theorem 2 then states 

/~'~ @ A2(W2) ~__M12 

E1 ° ® A 2(W2) <_ 1 - M12. 
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It is an easy matter to derive these equations and the analogue of the second 
statement of Theorem 2 directly from (*). Less trivial is the statement of 
Theorem 3 if rewritten in terms of Hilbert space quantum mechanics: F 1 is 
a projection, i.e. E ° = 1 - E~, if and only if, 

(i) (1 @ Az(W2))M,2 -M12(1 @ A2(W2)) = 0 

(ii) El ® A2(W2) =M12(t ® A2(W2)) 

(iii) E ° ® A2(W2) = (1. -M12)(1 ® A2(W2)) 

V 

There are measurement processes in the course of which, together with 
[//12 ], another proposition, say [p 12 ], can finally be observed. We have to 
presuppose [//12 ] ** [P12 ], which is clear, if final observations are classical. 
Two questions, we denote them by e 1 and 61, are then defined by one 
measurement process due to observation of [//12] or [P12], respectively. In 
the terminology of G. Ludwig e 1 is then called coexistent with 61- If, more- 
over, [re1 ] = ~0 [e 1 ] and [vfi 1 ] = ¢ [811, we call [e 1 ] commensurable with 
[g 1 ]- Any proposition of the boolean sublattice of [.~ 12 ] generated by 
{ [#12], [P12 ] } defines a question on the quantum object, and observation 
of both [//12] and [P12] fixes yes or no for each. One expects the sublattice 
of [-~1 ], which is generated by { [q  ], [81] }, to also be boolean, or, in other 
words, [el ] +~ [61 ]- 

Theorem 4. Let [e 1] and [81 ] be commensurable and defined as above by 
final observation of [//12] or [P12], [//12] ** [P12], on the compound system, 
respectively. Then [e I ] and [81 ] are compatible and, moreover, final observa- 
tion of any proposition of the boolean sublattice of [~12] generated by {[//12], 
[/912] } defines a question a 1 which fulfills [vail = ~o[oq]. 

Proof. From assumptions we have besides [//121 ~ [P12] also ®2 o a2([r 2]) 
"~ [P12], and (92 o a2([r 2]) ~ [P12], the latter by condition (i) of Theorem 3. 
The other conditions of Theorem 3 give 

O1([el] ) AO 2 oa2([l~ 2]) = [//12] AO 2 oa2( [ lY2] ) 

t ~ l ( [ e l ]  ) A 0 2 ©a2([1~2] ) =~[//12] A 0 2 Oa2( [ r2] ) 

O1([81])A O2 oaa([  r21)= [P12] AO2 oa2 ( [ r2 ] )  

~°Oi([ 61]) t', ®2 oa2([ r21) =~;[P12] A O2 Oa2([ r2]) 

O2 0 a2([ r 2]) is compatible with any other proposition which arises in the 
four equations. Trivial computation leads to 

®1(([el1 A~O([6,I)V [ill] ) A @2 °a2([  r 2]) 

=(([//1=1 A ¢[P12]) V [012]) A @2 °a2([r 2]) 

~--[//12] AO 2Oa2([I :2])=IDI([e l ] )At ' )  2Oa2( [ r2 ]  ) 
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Application of Lemma 3 leads to 

([~,] A ~[~1]) v [~1] >_ [q]  

which is equivalent to [e 1 ] +' [g 1 ] (cf. Piron, 1964, Appendice II, Theor~me 
VII). This proves the first statement of  the theorem. 

Let [ol 2 ] denote any element of  the sublattice of  [2 t2  ] generated by  
{[/112], Lo12 ] }, and let [aa ] denote the corresponding, i.e. in the same way 
defined, element of  the sublattice of  [21 ] generated by {[el ] ,  [~ t ] }. One 
derives in the same manner as above 

o1([~11) A oz oa2([r21)  = [ot2] A 02 oa2([~2])  

~1( [0~1] )  A (~2 ° a 2 ( [ r 2 1 )  =~[0121 A O 2 o a 2 ( [ r e ] )  

Compatibility of  [o12] with ®2 o a2 ( [ r  2]) is trivial. So conditions (i) 
through (iii) of  Theorem 3 are fulfilled which proves [pal ] = ~ [a 1 ] .  This 
completes the proof  of  Theorem 4. 

A straightforward generalisation would be: Let us be given a boolean sub- 
lattice of  [~12 ] such that for a generating set of  propositions conditions (i) 
through (iii) of  Theorem 3 are fulfilled. Then the corresponding propositions 
in [21 ] defined by the measurement process form a boolean sublattice. In 
other words, we have a sufficient condition for an observable of  the compound 
system to define an observable of  the quantum object. 

Another interesting problem is whether compatible propositions are 
always commensurable. This can be shown in Hilbert-space formulation of  
the measurement process (Hellwig, 1969). Here we have dropped the covering 
law, i.e. we are working with weaker presumptions than in Hilbert space. 
Until now we have not succeeded in showing that compatibility implies 
commensurability. 
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